
DBDOC: Querying and Browsing Databases and
Interrelated Documents

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Zhibo Chen
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

ABSTRACT

Large collections of documents are commonly created around
a database, where a typical database schema may contain
hundreds of tables and thousands of columns. We developed
a system based on SQL code generation and User-Defined
Functions that analyzes document-to-metadata links by ex-
tracting a basic set of relationships at different levels of gran-
ularities: coarse, medium and fine. Such relationships are
then stored and queried in the DBMS, allowing the user to
explore, query, and rank how columns and tables are re-
lated to users and applications. At the same time, our sys-
tem provides typical information retrieval capabilities for
querying medium-sized document collections of interrelated
documents in the DBMS, with an acceptable performance.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion—Data warehouse and repository

General Terms

Management, Documentation, Design

1. INTRODUCTION
The information retrieval (IR) world and the database

(DB) world have focused their research on different areas.
A database schema contains structure and hierarchy. Hence,
the data stored in a database is associated with an explicit
meaning, as opposed to the data spread throughout in the
unstructured world. The semi-structured data, in relation
to a database schema, has become valuable because of the
ability to describe this structured data. Managing semi-
structured sources, such as documents, text files, web pages
and spreadsheets is challenging when compared to working
with the self-described structured data in a DBMS. As a
result, linking this information is also challenging, but ob-
taining such relationships can be widely used to describe
and obtain hidden knowledge. We decided to build a novel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KEYS’09, June 28, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-570-3/09/06 ...$5.00.

Figure 1: Relations.

model integrating the approaches from [3, 1], in a system
that explores such relationships and ranks or retrieves them
using in-database IR capabilities and speedup techniques
(Rank-Join approach for top-k querying). We believe that
using a relational database as a central repository for storing
the metadata is the right approach for integrating these two
worlds, and allows the user to find unknown relationships
that are not the result of a simple keyword matching. We
tested our application with a scientific database containing
water pollution data and a collection of documents from the
Texas Commission on Environmental Quality to allow the
user to answer non-trivial questions such as, “Which tables
are more related to arsenic?” or “Which authors use table X
more?” Our motivation for developing this novel approach
is to find a reduced set of relationships in complex database
schemes which can be stored, used, and efficiently managed
in a DBMS, instead of using the original collection.

2. SYSTEM TECHNICAL DESCRIPTION
Structured data is represented as tables, columns and

fields in a database schema, where the fields represent the
content of the columns in a database. The unstructured
or semi-structured data represents all the words contained
in any external source of the database. All the words are
then treated without any hierarchy, and represent just a
“bag of words” related to a source. Additionally, the doc-
ument’s metadata, such as author and title, was extracted,
for matching additional relationships with this information.
All of this information was then stored in the database and
ranked based on the results of its relationships using the vec-
tor space model (VSM). The metadata found in the struc-
tured and the semi-structured data were matched, and three
types of relationship were generated: coarse-relationships,
medium-relationships, and fine-relationships. These rela-
tionships differ in the level of scope in which they match
these terms (see Figure 1). The coarse-relationships are
based on describing a relationship between a document and
the title of a table in the schema. The medium-relationships
describe the level of relationship between the terms in the

Figure 2: Relationship discovery.

document and the columns in the schema. The fine- re-
lationships are the most complex type of relationships, and
they are the result of matching the content of the structured
data and the content of each semi-structured source. Once
we computed these relationships, we had to adjust the tradi-
tional document VSM to work with our relationship model,
but we kept the VSM for traditional IR searches in the doc-
uments’ abstracts. All the computations, such as the cosine
similarity formula, the inverse frequency, or the document
frequency are related exclusively to a relationship type, and
this implies having separate term weights for each. The
VSM framework in SQL for traditional searches is detailed
in [1]. The application was developed using SQL statements
and in-database extensions, such as User-Defined Functions
(UDFs) for stemming, SQL statements for cleaning, storing
and obtaining the relationships, and recursive queries for
parsing and ranking [1]. The ranking function retrieves the
top-k relationships using the Rank-Join algorithm [2].

3. SYSTEM DEMONSTRATION
The system was built as a Web Application, and developed

entirely within the DBMS. The implementation in SQL is
justified because it allows the system to be portable to mul-
tiple DBMSs [1], has the ability to manage these relation-
ships efficiently, and takes advantage of optimized queries
and algorithms to manage fast retrieval, indexing, and clus-
tered storage. The system works in a client-server architec-
ture, where all processing is performed in the server, and the
front-end is used exclusively for retrieving the information
to the end-user, and querying. Therefore, the front-end is a
thin layer of SQL generation, which connects to the DBMS
using ODBC. We also used recursive queries for parsing doc-
uments, a UDF for stemming, and indexed the term tables.
We clustered the term tables with secondary indexes on the
term name to speedup the discovery of relationships. The
front-end was developed with the ASP .NET framework.
The user interface allows searching documents utilizing the
relationships involving Users, Tables, Documents, Columns
and Fields, as well as the document abstracts. The output
shows the results that are part of the database schema (e.g.
columns), the results that are part of the semi-structured
world (e.g. authors) and the SQL associated to obtain those
results. The front-end also allows the user to define the
settings of the application, such as the document loading
options, on-demand relationships search, and the top-k im-

Figure 3: Query results.

plementation (traditional, UDF, SQL).
For the demonstration, our application will be tested us-

ing a pre-processed collection of 1000 documents. It will be
separated into two parts: (1) creation and search of relation-
ships and (2) navigating interrelated documents, top-k se-
lection, exploration of the relationships, and tracing perfor-
mance. In the first part (see Figure 2), the user will see how
relationships are created between unstructured documents
and structured database tables. Once the relationships are
created, the user can query these relationships with terms to
find the best matching documents. The users are provided
the option of searching for multiple terms conjunctively or
disjunctively. In the second part of the demonstration (see
Figure 3), the user will be able to navigate and explore all
types of relationships to gain information about the inter-
related documents and the database not available through
searching. It will be shown that by forming relationships
between the unstructured and structured data, it is possible
to obtain additional knowledge that was previously unavail-
able. Starting with the results of a search, it is possible to
navigate to other relationships. As an example, the user will
first search for a keyword in our document collection. With
the top-k ranked results, it is possible to find information
such as all documents written by the same author, all doc-
uments that reference the same database table, all authors
who used a particular table, and all tables referenced by a
particular document. Now, the user will have experimented
with the type of information available from coarse relation-
ships. It is also possible to combine the different levels of
relationships and obtain more information. With such cross
referencing, the user can find all columns used by a particu-
lar author, all documents referencing a specific column, and
all columns referenced in a specific year. As we can see, such
knowledge cannot be obtained using a typical search.

4. REFERENCES
[1] C. Garcia-Alvarado and C. Ordonez. Information

retrieval from digital libraries in SQL. In ACM WIDM

Workshop, pages 55–62, 2008.

[2] I.F. Ilyas, G. Beskales, and M.A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):1–58, 2008.

[3] C. Ordonez, Z. Chen, and J. Garćıa-Garćıa. Metadata
management for federated databases. In ACM CIMS

Workshop, pages 31–38, 2007.

