
Building Search Applications with MarkLogic Server
Ron Avnur

Mark Logic Corporation

ron@marklogic.com

ABSTRACT
Keyword search is recognized as an important technique to
unlocking the information found in both structured and semi-
structured information. With XML as the data model and XQuery
as the programming language, MarkLogic Server[1] allows
developers to build search into their information-centric
applications.

We are increasingly interested in lowering the learning curve of
application development. This demo will show a tool that
interrogates a corpus of information, presents a user interface to
define the behavior of an application, and then compiles and
deploys a search application over a set of XML documents.

1. Introduction
MarkLogic Server is a flexible platform for building applications
that unlock the valuable information found in semi-structured and
unstructured documents. Using XML as the underlying data
format, the system can easily ingest and query documents of
varying shapes and sizes[2]. We commonly see keyword search
queries employed in applications built with MarkLogic.

Developers use XQuery[3] to build their applications and to query
or interact with the data they’ve loaded into the system. Keyword
search queries are facilitated by the Full Text extensions of
XQuery[4]. While an easy language to learn, we’re always
interested in providing a lower barrier to querying the database.

The common use of keyword search in applications is detailed in
section 2, where we discuss common design patterns and
application features that we aim to generalize. In section 3 we
then describe the options that our new tool, Application Builder,
aims to present its end-users. Last we summarize the
demonstration that will illustrate installing the system, loading
content, configuring options, and enjoying a deployed keyword-
search application.

2. Keyword Search Applications
Reviewing various keyword search applications or systems, one
may find the following common components:

1. Search Grammar: A collection of rules for
applying boolean operators to help a user express
complex keyword constraints. For example: “cat
OR dog” to find all documents that contain either
the word “cat” or the word “dog”.

2. Multiple sorting options: The ability to order

results by various options. Each option consists of
a combination of term-frequency based scoring
algorithms (such as TF/IDF) and metadata about
each result item (such as publication date).

3. Declarative search constraints: Uniquely
identifying subsets of the corpus for finer-grained
search. An application may generally search for
keywords anywhere within a document, but users
sometimes want to focus a query to restrict against
only a slice of every document. For example, given
a search for “summary:performance” a grammar
may search for the word performance within only
the summary field, where the field is defined as
text within documents that is a descendant of either
elements named “abstract” or “synopsis.”

4. Rendering of search results: Results are displayed
in a summary format to help a user choose which
item she’d like to see more details about. This
information may include a snippet of the narrative
accompanied by metadata about the document.

5. Result set characterization: Given a result to a
search, query systems typically share information
about the results to help the user learn about the
set. At the very least, systems typically indicate
how many results matched a given criteria and
display some top k items. In addition, they may
also display aggregate information on various axes
(or columns). For example, a search across books
may display unique authors, editors, publication
decade, and price. Some aggregates list all the
unique values with frequencies, such as authors,
whereas others identify buckets of values, such as
price along with the aggregate frequency of the
bucket.

Our tool aims to generalize these common search application
features, proving a user interface for specifying desired behavior
as input to a compiler that generates the XQuery-based
application.

3. Application Builder
This section described the six tabs that separate the components
of the Application Builder, where the title of each sub-section
matches the name of the tab.

3.1 Appearance
The Appearance tab lets users select a name, logo, and other
metadata for the application. They can also select a skin for the
application, applying a common style sheet to give the application
a common visual theme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KEYS'09, June 28, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-570-3/09/06

39

Figure 1. The search tab of the Application Builder

3.2 Search
The search tab allows the user to customize a default search
grammar, select components of the content to use to help
characterize results, and identify constraints.

In addition to customizing behavior of boolean operators, the user
can customize search behavior with respect to case, punctuation,
and diacritic sensitivity. She can also choose to apply language-
specific stemming to search terms, increasing recall for search
terms. Wildcard searches can also be controlled in this section.

The application interrogates the content and system configuration
to identify which elements in the corpus can be used to
characterize result sets. Given the system configuration, elements
that have been configured with scalar indexes are considered
eligible because any aggregates and grouping based on these
elements can be applied efficiently (without fetching each
document off disk). The user can then choose which elements to
use in rendering characterization information.

3.3 Sorting
The application designer may want to allow users to sort results
by several methods. Sort options include scoring algorithms
based on the popularity of terms in documents versus the database
(such TF/IDF) as well as any elements containing scalar
information. Each scoring option can be composed of one or
more relevance-based or scalar-based components. As an
example, a developer can provide an ordering that uses a
publication date as the primary and relevance score as the
secondary sort ordering.

3.4 Results
The results screen of a search application typically displays a
subset of the search results with options to move the display
window forward or backwards within the result set. The
information displayed for each result can be configured to select
result titles, metadata displayed, and representation for a snippet

of the content in the result item. To facilitate design, the system
renders some sample content according to the choices selected as
a form of preview, providing visual feedback to the designer.

3.5 Content
As an end-user browses the results, she may choose to click on a
result in order to view a detailed rendering of the selected item.
The content tab let’s the application designer configure rendering
options that will determine how a result is displayed for end-users
in the deployed application. A preview of sample content is
provided in this tab as well.

3.6 Deploy
The last tab consists mainly of a “deploy” button that passes all
the options selected to an application compiler that generates the
XQuery application and deploys it within a MarkLogic Server
environment for use. End users can then be directed to this
application to begin interacting with and searching across the
information.

4. Demonstration
Our demonstration will illustrate building an application without
writing any code. We will first illustrate how to load content into
the system without needing any scripting, programming, or a
schema. We will then open the application builder and choose
search criteria, sorting options, result set presentation, and content
rendering. We will then deploy the application, review it, and
perhaps modify the application configuration and re-deploy.

Building applications so quickly can help content experts first
understand and analyze their content set in order to facilitate
building information-centric applications with keyword search at
their core. The application generated by Application Builder is
built to scale. While the data loaded during the presentation may
not be large, this application can scale to deployments with many
millions of documents spread across a large shared-nothing
cluster of machines running MarkLogic Server.

5. REFERENCES
[1] MarkLogic Server. DOI=

http://marklogic.com/product/marklogic-server.html.

[2] Holstege, M. 2008. Big, Fast, XQuery: Enabling Content
Applications. IEEE Bulletin of the Technical Committee on
Data (December 2008) Vol. 31 No. 4. 41-48.

[3] Boag S. et al. (editors) . XQuery 1.0: An XML Query
Language. W3C Recommendation. W3C. January 2007.
DOI= http://www.w3.org/TR/xquery/

[4] Amer-Yahia S. et al. (editors). XQuery and XPath Full Text
1.0. W3C Candidate Recommendation. W3C. May 2008.
DOI=http://www.w3.org/TR/xpath-full-text-10/

40

